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An Intelligent Systems Approach to
Mixing Multitrack Audio

Joshua D. Reiss

Introduction

Although audio production tasks are challenging and technical, much of
the initial work follows established rules and best practices. Yet multitrack
audio content is still often manipulated ‘by hand’, using no computerized
signal analysis. This is a time-consuming process, and prone to errors.
Only if time and resources permit does the sound engineer refine his or her
choices to produce an aesthetically pleasing mix which best captures the
intended sound.

In order to address this challenge, a new form of multitrack audio
signal processing has emerged. Intelligent tools have been devised that
analyze the relationships between all channels in order to automate the
mixing of multitrack audio content. By ‘intelligent’, we mean that these
tools are expert systems that perceive, reason, learn and act intelligently.
This implies that they must analyze the signals upon which they act,
dynamically adapt to audio inputs and sound scene, automatically config-
ure parameter settings, and exploit best practices in sound engineering to
modify the signals appropriately. They derive the parameters in the editing
of recordings or live audio based on analysis of the audio content and on
objective and perceptual criteria. In parallel, intelligent audio production
interfaces have arisen that guide the user, learn his or her preferences and
present intuitive, perceptually relevant controls.

An assumption that is often, but not always, made about mixing is
that it is an iterative process (Pestana, 2013). There is no fixed order in
the sequence of steps applied, and an iterative, coarse-to-fine approach
is applied (Figure 15.1) whereby mixing is treated as an optimization
problem, with targets and criteria set for the final mix. Such a view lends
itself well to an intelligent systems approach, whereby the steps can be
sequenced and diverse optimization or adaptive techniques can be applied
in order to achieve given objectives.

For progress towards intelligent systems in this domain, significant
problems must be overcome that have not yet been tackled by the research
community. First, multitrack audio editing tools demand manual interven-
tion. Although audio editors are capable of saving a set of static scenes
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Figure 15.1 The iterative approach to mixing multitrack audio

for later use, they lack the ability to take intelligent decisions, such as
adapting to different acoustic environments or different set of inputs. Sec-
ond, most state-of-the-art audio signal processing techniques focus on
single-channel signals. Yet multichannel or multitrack signals are perva-
sive, and the interaction and dependency between channels plays a criti-
cal role in audio production quality. This issue has been addressed in the
context of audio source separation research, but the challenge in source
separation is generally dependent on how the sources were mixed, not on
the respective content of each source. New, multi-input multi-output audio
signal processing methods are required, which can analyze the content
of all sources in order to improve the quality of capturing, editing and
combining multitrack audio. Finally, advances in machine learning must
be tailored towards problems and practical applications in the domain of
audio production. This chapter presents an overview of recent advances in
this area.

Enabling concepts

The idea of automating the audio production process, although relatively
unexplored, is not new. In Automation for the People (White, 2008), the
editor of Sound on Sound magazine wrote, “There’s no reason why a band
recording using reasonably conventional instrumentation shouldn’t be
EQ’d and balanced automatically by advanced DAW software”. He also
wrote that mixing tools can “come with a ‘gain learn’ mode . . . DAWs
could optimise their own mixer and plug-in gain structure while preserv-
ing the same mix balance”. This would address the needs of the musi-
cian who doesn’t have the time, expertise or inclination to perform all
the audio engineering required. Similarly, Moorer (2000) introduced the
concept of an Intelligent Assistant, incorporating psychoacoustic models
of loudness and audibility, intended to “take over the mundane aspects of
music production, leaving the creative side to the professionals, where
it belongs”.
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Automatic mixing research has received a lot of attention in recent
years. The state of the art was described in Reiss (2011), but since then the
field has grown rapidly. This section describes the key concepts in auto-
matic mixing.

Intelligent and Adaptive Digital Audio Effects

Rather than have sound engineers manually apply many audio effects to
all audio inputs and determine their appropriate parameter settings, intel-
ligent, adaptive digital audio effects may be applied instead (Verfaille
et al., 2006). The parameter settings of adaptive effects are determined
by analysis of the audio content, where the analysis is achieved by a fea-
ture extraction component built into the effect. Intelligent audio effects
also analyze or ‘listen’ to the audio signal, but are furthermore imbued
with knowledge of their intended use and control their own operation in
a manner similar to manual operation by a trained engineer. The knowl-
edge of their use may be derived from established best practices in sound
engineering, psychoacoustic studies that provide understanding of human
preference for audio editing techniques or machine learning from training
data based on previous use. Thus, an intelligent audio effect may be used
to set the appropriate equalization, automate the parameters on dynamics
processors and adjust stereo recordings to more effectively distinguish the
sources.

A block diagram of an intelligent audio effect is given in Figure 15.2.
Any additional processing is performed in a separate section so that the
audio signal flow is unaffected. This side chain is essential for low latency,
real-time signal flow. The side chain is comprised of a feature extraction
section and an analysis section.

Audio Input
Constraints I A
(psychoacoustics, —E et :
best practices, : § Feanes i
machine ':'R'l'd'e'x'> Processing [ o Procsssing
learning) L Sidechainprocessing | L
2

Figure 15.2 Block diagram of an intelligent audio effect. Features are extracted by
analysis of the audio signal. These features are then processed based on a set of rules
intended to mimic the behavior of a trained engineer. A set of controls are produced
which are used to modify the audio signal
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The feature extraction is in charge of extracting a series of features from
the input channel. Accumulative averaging, described in a later section,
is used to ensure real-time signal processing operations, even when the
feature extraction process is non-real time. The analysis section outputs
control signals to the signal processing side in order to trigger the desired
parameter control change command.

Reiss (2011) described several intelligent, adaptive effects for use
with single-channel audio, which automate many parameters and enable
a higher level of audio editing and manipulation. This included adap-
tive effects that control the panning of a sound source between two user-
defined points, depending on the sound level or frequency content of the
source, and noise gates with parameters which are automatically derived
from the signal content.

Cross-Adaptive Digital Audio Effects

When editing multitrack audio, one performs signal processing changes
on a given signal source not only because of the source content but also
because there is a simultaneous need to blend it with the content of other
sources, so that a high-quality mix is achieved. The relationship between
all the sources involved in the audio mix must be taken into account.
Thus, a cross-adaptive effect processing architecture is ideal for auto-
matic mixing.

In a cross-adaptive effect, also known as inter-channel dependent or
MIMO (multi-input / multi-output) effect, the signal processing of an
individual source is the result of the relationships between all involved
sources. That is, these effects analyze the signal content of several input
channels in order to produce several output channels. This generalizes the
single-channel adaptive signal processing mentioned above.

In an intelligent multitrack audio editing system, as shown in Fig-
ure 15.3, the side chain will consist of a feature extraction section for each
channel and a single analysis section that processes the features extracted
from many channels. The cross-adaptive processing section of an intelli-
gent multitrack audio editing system exploits the interdependence of the
input features in order to output the appropriate control data. This data
controls the parameters in the signal processing of the multitrack content.
The cross-adaptive feature processing can be implemented by a set of con-
strained rules that consider the interdependence between channels.

In principle, cross-adaptive digital audio effects have been in use since
the development of the microphone mixer. However, such systems are only
concerned with automatic gain handling and require a significant amount
of human interaction during setup to ensure a stable operation.

Intelligent, Multitrack Digital Audio Effects

In Reiss (2011), and references therein, several cross-adaptive digital
audio effects were described that explored the possibility of reproducing
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Figure 15.3 Block diagram of an intelligent, cross-adaptive mixing system. Extracted
features from all channels are sent to the same feature-processing block, where con-
trols are produced. The output channels are summed to produce a mix that depends
on the relationships between all input channels

the mixing decisions of a skilled audio engineer with minimal or no human
interaction. Each of these effects produces a set of mixes where each out-
put may be given by the following equation;

M-1K-1

mix[n]=> ¢, [n]*x,[n], (1)

k=0

=1

m=

where there are M input tracks and L channels in the output mix. K is the
length of the control vector ¢ and x is the multitrack input. Thus, the resul-
tant mixed signal at time 7 is a sum over all input channels, of a control
vectors convolved with the input signal.

Any cross-adaptive digital audio effect that employs linear filters may
be described in this manner. For automatic faders and source enhance-
ment, the control vectors are simple scalars, and hence the convolution
operation becomes multiplication. For polarity correction, a binary valued
scalar, £1, is used. For automatic panners, two mixes are created, where
panning is also determined with a scalar multiplication (typically, the
sine-cosine panning law). For delay correction, the control vectors become
a single delay operation. This applies even when different delay estimation
methods are used, or when there are multiple active sources. If multitrack
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convolutional reverb is applied, then ¢ represents direct application of
a finite room impulse response. And automatic equalization employs
impulse responses for the control vectors based on transfer functions rep-
resenting each equalization curve applied to each channel. And though
dynamic range compression is a nonlinear effect due to its level depen-
dence, the application of feedforward compression is still as a simple gain
function. So multitrack dynamic range compression would be based on a
time-varying gain for each control vector.

Real-Time, Multitrack Intelligent Audio Signal Processing

The standard approach adopted by the research community for real-
time audio signal processing is to perform a direct translation of a
computationally efficient off-line routine into one that operates on a
window-by-window basis. However, effective use in live sound or inter-
active audio requires not only that the methods be real-time, but also
that there is no perceptible latency. The minimal latency requirement is
necessary because there should be no perceptible delay between when a
sound is produced and when the modified sound is heard by the listener.
Thus, many common real-time technologies, such as look-ahead and the
use of long windows, are not possible. The windowed approach produces
an inherent delay (the length of a window) that renders such techniques
impractical for many applications. Nor can one assume time invariance;
sources move and content changes during performance. To surmount
these barriers, perceptually relevant features must be found which can
be quickly extracted in the time domain, analysis must rapidly adapt
to varying conditions and constraints, and effects must be produced in
advance of a change in signal content.

In this section, we look at some of the main enabling technologies that
are used.

Reference Signals and Adaptive Thresholds

An important consideration to be taken into account during analysis of
an audio signal is the presence of noise. The existence of interference,
crosstalk and ambient noise will influence the ability to derive information
about the source. For many tasks, the signal analysis should only be based
on signal content when the source is active, and the presence of significant
noise can make this difficult to identify.

One of the most common methods used for ensuring that an intelligent
tool can operate with widely varying input data is adaptive gating, where a
gating threshold adapts according to the existing noise. A reference micro-
phone placed far from the source signal may be used to capture an estima-
tion of ambient noise. This microphone signal can then be used to derive
the adaptive threshold. Although automatic gating is typically applied to
gate an audio signal, it can also be used to gate whether the extracted fea-
tures will be processed.
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The most straightforward way to implement this is to apply a gate that
ensures that the control vector is only updated when the signal level of the
m™ channel is larger than the level of the reference, as given in the follow-
ing equation;

c,[n] xrzn,RMS [n]< rI?MS [n]
ac, [n+1]+(1-a)c, [n] otherwise

¢, [n+1] ={ @)

Where ¢' represents an instantaneous estimation of the control vector.
Thus, the current control vector is a weighted sum of the previous control
vector and some function of the extracted features. Initially, computation
of RMS level of a signal x is given by

2 1 < 2
x. [n]l=— ) x[n—m 3
=1 2 3 n=m] ()
And later values may either be given by a sliding window, which reduces to
Xous(M+H D) =X (n+ 1)/ M +x;,(n)—X*(n+1=-M)/ M, (4

or a low-pass one pole filter (also known as an exponential moving average
filter),

Xpus (D)= A (n+ D)+ (1= Pagys(m) . (5)

o and B and represent time constants of IR filters and allow for the control
vector and RMS estimation, respectively, to smoothly change with varying
conditions. Eq. (4) represents a form of dynamic real-time extraction of a
feature (in this case, RMS), and Eq. (5) represents an accumulative form.

Incorporating Best Practices Into Constrained Control Rules

In order to develop intelligent software tools, it is essential to formalize
and analyze audio production methods and techniques. This will establish
required functionality of such tools. Furthermore, analysis of the mixing
and mastering process will identify techniques that facilitate the mixing of
multitracks, and repetitive tasks which can be automated. By establishing
methodologies of audio production used by professional sound engineers,
features and constraints can be specified that will enable automation.
Many of the best practices in sound engineering are well known and
have been described in the literature (Pestana et al., 2014b). In live sound,
for instance, the maximum acoustic gain of the lead vocalist, if present,
tends to be the reference to which the rest of the channels are mixed, and
this maximum acoustic gain is constrained by the level at which acoustic
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feedback occurs. Furthermore, resonances and background hum should be
removed from individual sources before mixing, all active sources should
be heard, delays should be set so as to prevent comb filtering, dynamic
range compression should reduce drastic changes in loudness of one
source as compared to the rest of the mix, panning should be balanced,
spectral and psychoacoustic masking of sources must be minimized, and
SO on.

Similarly, many aspects of sound spatialization obey standard rules.
For instance, a stereo mix should be balanced and hard panning avoided.
When spatial audio is rendered with height, low-frequency sound sources
are typically placed near the ground, and high-frequency sources are
placed above, in accordance with human auditory preference. Sources
with similar frequency content should be placed far apart, in order to
prevent spatial masking and improve the intelligibility of content. Inter-
estingly, Wakefield et al. (2015) showed that this avoidance of spatial
masking may be a far more effective way to address general masking
issues in a mix than alternative approaches using equalizers, compres-
sors and level balancing.

These best practices and common approaches translate directly into
constraints that are built into intelligent software tools. For example, De
Man et al. (2013a, 2013b) described autonomous systems that were built
entirely on best practices found in the literature. Also, many parameters on
digital audio effects can be set based on an understanding of best practices
and analysis of signal content, e. g., attack and release on dynamics pro-
cessors are kept short for percussive sounds.

Psychoacoustic Studies

Important questions arise concerning the psychoacoustics of mixing mul-
titrack content. For instance, little has been formally established concern-
ing user preference for relative amounts of dynamic range compression
used on each track. Admittedly, such choices are often artistic decisions,
but there are many technical tasks in the production process for which
listening tests have not yet been performed to even establish whether a
listener preference exists.

Listening tests must be performed to ascertain the extent to which lis-
teners can detect undesired artifacts that commonly occur in the audio
production process. Important work in this area has addressed issues such
as level balance preference (King et al., 2010, 2012), reverberation level
preference (Leonard et al., 2012, 2013), ‘punch’ (Fenton et al., 2015), per-
ceived loudness and dynamic range compression (Wilson et al., 2016), as
well as the design and interpretation of such listening tests.

Before they are ready for practical use, intelligent software tools need to
be evaluated by both amateurs and professional sound engineers to assess
their effectiveness and compare different approaches. In contrast to sep-
aration of sources in multitrack content, there has been little published
work on subjective evaluation of the intelligent tools for mixing multitrack
audio. Where possible, prototypes should also be tested with engineers
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from the live sound and post-production communities in order to assess
the user experience and compare performance and parameter settings with
manual operation. This research would both identify preferred sound engi-
neering approaches and allow automatic mixing criteria derived from best
practices to be replaced with more rigorous criteria based on psychoacous-
tic studies.

Recent developments

Table 15.1 provides an overview of intelligent mixing systems since the
early ones described in Reiss (2011). These technologies are classified in
terms of their overall goal, whether they are multitrack or single track,
whether or not they are intended for real-time use and how their rules are
found.

Many of the tools deal with masking in some form. Lopez et al. (2010),
Aichinger et al. (2011) and Ma et al. (2014) all propose measures of mask-
ing in multitrack mixes, but do not contain intelligent approaches to mask-
ing reduction.

Faders

The most common form of multitrack automatic mixing system is based
around simple level adjustments on each track. In almost all cases, it
begins with the assumption that each track is meant to be heard at roughly
equal loudness levels.

Mansbridge et al. (2012b) provided a real-time system, using ITU 1770
as the loudness model. The off-line system described in Ward et al. (2012)
attempted to control faders with auditory models of loudness and partial
loudness. In theory, this approach should be more aligned with perception
and take into account masking, at the expense of computational efficiency.
But Wichern et al. (2015) showed that the use of an auditory model offered
little improvement over simple single-band, energy-based approaches. Inter-
estingly, the evaluation in Mansbridge et al. (2012b) showed that autono-
mous faders could compete with manual approaches by professionals, and
test subjects gave the autonomous system highly consistent ratings, regard-
less of the song (and its genre and instrumentation) used for testing. This
suggests that the equal loudness rule is broadly applicable, whereas pref-
erence for decisions in manual mixes differs widely dependent on content.

Equalization

The rules and best practices for equalization typically fall into two catego-
ries: artifact correction, such as hum removal (Brandt et al., 2014) and the
equalization of salient frequencies (Bitzer et al., 2008), or creative equal-
ization (which may still follow rules and best practices), where equalizers
are applied in order to achieve a certain overall spectrum (Pestana et al.,
2013; Deruty et al., 2014).
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Ma et al. (2013) described an intelligent equalization tool that, in real
time, equalized an incoming audio stream towards a target frequency
spectrum. The target spectrum was derived from analysis of fifty years
of commercially successful recordings (Pestana et al., 2013). Since the
input signal to be equalized is continually changing, the desired magnitude
response of the target filter is also changing (though the target output spec-
trum remains the same). Thus, smoothing was applied from frame to frame
on the desired magnitude response and on the applied filter. Targeting was
achieved using the Yule-Walker method, which can be used to design an
IIR filter with a desired magnitude response.

Hafezi et al. (2015) created a multitrack intelligent equalizer that used a
measure of masking and rules based on best practices from the literature to
apply, in real time, different multiband equalization curves to each track.
Results of objective and subjective evaluation were mixed and showed lots
of room for improvement, but they indicated that masking was reduced
and the resultant mixes were preferred over amateur, manual mixes.

Stereo Positioning

The premise of Mansbridge et al. (2012a) is that one of the primary goals
of stereo panning is to ‘fill out’ the stereo field and reduce masking. It set
target criteria of source balancing (equal numbering and symmetric posi-
tioning of sources on either side of the stereo field), spatial balancing (uni-
form distribution of levels) and spectral balancing (uniform distribution
of content within each frequency band). It further assumes that the higher
the frequency content of a source, the more it will be panned, and that no
hard panning will be applied. Finally, it used a multitude of techniques to
position the sources; amplitude panning, timing differences and double
tracking.

Pestana et al. (2014a) took a different approach, where different fre-
quency bands of each multitrack are assigned different spatial positions in
the mix. This approach is unique among the intelligent multitrack mixing
tools since it does not emulate, even approximately, what might be per-
formed by a practitioner. That is, practitioners aim for a single position
(albeit sometimes diffuse) of each source. However, it captures the spirit
of many practical approaches since it greatly reduces masking and makes
effective use of the entire stereo field. In fact, Matz et al. (2015) showed
that dynamic spectral panning had a larger effect in the overall improve-
ment provided by automatic mixing than any of the other tools they con-
sidered (intelligent distortion, autonomous faders and multitrack EQ).

Dynamic Range Compression

Automating dynamic range compression is much more challenging than
other effects for several reasons. It is a nonlinear effect with feedback,
there are complicated relationships between its parameters and its use is
less understood than other effects. Nevertheless, Giannoulis et al. (2013)
automated most of the parameters of a compressor such that a single
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parameter determines the overall amount of compression and all other
parameters are optimized to the signal. This was taken one step further
by Mason et al. (2015), where the amount of dynamic range compression
applied is determined based on a measurement of the background noise
level in the environment.

A first attempt at multitrack dynamic range compression was provided
by Maddams et al. (2012). Results of evaluation were mixed, and it was
difficult to identify a preference between an automatic mix, a manual mix
and no compression applied at all. Furthermore, it wasn’t possible to tell
whether this was due to a genuine lack of preference or due to limitations
in the experimental design (e.g., poor stimuli, untrained test subjects).

A more rigorous approach was taken in Ma et al. (2015). The challenge
was to formalize and quantify the relevant best practices described in Pes-
tana et al. (2014b). First, a method of adjustment test was performed to
establish preferred parameter settings for a wide variety of content. Then
least squares regression was used to identify the best combination of can-
didate features that map to parameter settings. Thus, a rule such as ‘more
compression is applied to percussive tracks’ translates to ‘the ratio setting
of the compressor is a particular function of a certain measure of per-
cussivity in the input audio track’. Perceptual evaluation then showed a
clear preference for automatic dynamic range compression over amateur
application and over no compression, and sometimes performed close to
professionals.

Studies have also investigated the dynamic range (or loudness range) of
commercial content (Deruty et al., 2014; Kirchberger et al., 2016). Though
the relationship between this range and the settings of dynamic range com-
pressors is a complicated one, this direction of research may lead the way
towards automatic dynamic range compression based on matching the
dynamics of popular recordings, similar to the approach taken in Ma et al.
(2013) for equalization.

Delay, Polarity and Interference

Delay and interference reduction are actually well-established signal pro-
cessing techniques, more generally known as time alignment and source
separation, but in Clifford et al. (2010, 2011a, 2011b, 2013) and Jillings
et al. (2013) they are used and customized for mixing applications. That is,
they deal with optimizing parameter settings for real world scenarios, such
as microphone placement around a drum kit, moving sources on stage and
interference reduction under the constraint that no additional artifacts may
be introduced.

Reverb

Of all the standard audio effects found on a mixing console or as built-in
algorithms in a digital audio workstation, there has perhaps been the least
effort on intelligent systems design for reverberation. Chourdakis et al.
(2016a, 2016b) proposed an adaptive digital audio effect for artificial



238 Joshua D. Reiss

reverberation that allows it to learn from the user in a supervised way.
They first perform feature selection and dimensionality reduction on fea-
tures extracted from a training data set. Then, a user provides examples of
reverberation parameters for the training data. Finally, a set of classifiers
is trained, and they are compared using 10-fold cross validation to com-
pare classification success ratios and mean squared errors. Tracks from the
Open Multitrack Testbed (De Man et al., 2014a) were used in order to train
and test the models.

Adaptive and Intuitive Mixing Interfaces

In this section, we provide an overview of the state of the art concerning
interfaces for intelligent or adaptive mixing, with an emphasis on per-
ceptual adaptive and intuitive controls. Various approaches for learning a
listener’s preferences for an equalization curve with a small number of fre-
quency bands have been applied to research in the setting of hearing aids
(Neuman et al., 1987; Durant et al., 2004) and cochlear implants (Wake-
field et al., 2005), and the modified simplex procedure (Kuk et al., 1992;
Stelmachowicz et al., 1994) is now an established approach for selecting
hearing aid frequency responses. However, many recent innovations have
emerged in the field of music production.

Dewey et al. (2013) and Mycroft et al. (2013) looked at the effect of
the complexity of the interface for an equalizer, and suggested that simpli-
fied interfaces may encourage the user to focus on the aural properties of
the signal, rather than the interpretation of visual information. Loviscach
(2008) presented an interface for a five-band parametric equalizer, where
the user simply freehand draws the desired transfer function and an evo-
lutionary optimization strategy (chosen for real-time interaction) finds the
closest match. Informal testing suggested that this interface reduced the
set-up time for a parametric equalizer compared to more traditional inter-
faces. Building on this, Heise et al. (2010) proposed a procedure to achieve
equalization and other effects using a black-box genetic optimization strat-
egy. Users are confronted with a series of comparisons of two differently
processed sound examples. Parameter settings are optimized by learning
from the users’ choices. Though these interfaces are novel and easy to use
by the nonexpert, they make no use of semantics or descriptors.

Considerable research has aimed at the development of technologies
that let musicians or sound engineers perform equalization using percep-
tually relevant or intuitive terms, e.g., brightness, warmth, presence. Reed
(2000) presented an assistive sound equalization expert system. Inductive
learning based on nearest neighbor pattern recognition was used to acquire
expert skills. These are then applied to adjust the timbral qualities of sound
in a context-dependent fashion. They emphasized that the system must
be context dependent; that is, the equalization depends on the input sig-
nal system and hence operates as an adaptive audio effect. In Mecklen-
burg et al. (2006), a self-organizing map was trained to represent common
equalizer settings in a two-dimensional space organized by similarity. The
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space was hand-labeled with descriptors that the researchers considered
intuitive. However, informal subjective evaluation suggested that users
would like to choose their own descriptors.

The work of Bryan Pardo and his collaborators has focused on new,
intelligent and adaptive interfaces for equalization tasks. They address the
challenge that complex interfaces for equalizers can prevent novices from
achieving their desired modifications. Sabin et al. (2008, 2009b, 2011)
described and evaluated an algorithm to rapidly learn a listener’s desired
equalization curve. Listeners were asked to indicate how well an equalized
sound could be described by a perceptual term. After rating, weightings for
each frequency band were found by correlating the gain at each frequency
band with listener responses, thus providing a mapping from the descrip-
tors to audio processing parameters. Listeners reported that the resultant
sounds captured their intended meanings of descriptors, and machine rat-
ings generated by computing the similarity of a given curve to the weighting
function were highly correlated to listener responses. This allows automated
construction of a simple and intuitive audio equalizer interface. In Pardo
et al. (2012a), active and transfer learning techniques were applied to exploit
knowledge from prior concepts taught to the system from prior users, greatly
enhancing the performance of the equalization learning algorithm.

The early work on intelligent equalization based on intuitive descriptors
was hampered by a limited set of descriptors with a limited set of training
data to map those descriptors to equalizer settings. Cartwright et al.(2013)
addressed this with SocialEQ, a web-based crowd-sourcing application
aimed at learning the vocabulary of audio equalization descriptors. To
date, 633 participants have participated in a total of 1,102 training ses-
sions (one session per learned word), of which 731 sessions were deemed
reliable in the sense that users were self-consistent in their answers (Pardo,
2015). This resulted in 324 distinct terms, and data on these terms is made
available for download.

Building on the mappings from descriptors to equalization curves,
Sabin et al. (2009a) described a simple equalizer where the entire set of
curves were represented in a two-dimensional space (similar to Meck-
lenburg et al., 2006), thus assigning spatial locations to each descriptor.
Equalization is performed by the user dragging a single dot around the
interface, which simultaneously manipulates 40 bands of a graphic equal-
izer. This approach was extended to multitrack equalization in Cartwright
et al. (2014), which provided an interface that, by varying simple graphic
equalizers applied to each track in a multitrack, allowed the user to intui-
tively explore a diverse set of mixes.

The concepts of perceptual control, learned from crowdsourcing, intui-
tive interface design and mapping of a high-dimensional parameter space
to a lower dimensional representation were all employed in Stasis et al.
(2015). This approach scaled equalizer parameters to spectral features of
the input signal, then mapped the equalizer’s thirteen controls to a 2D space.
The system was trained with a large set of parameter space data represent-
ing warmth and brightness, measured across a range of musical instrument
samples, allowing users to perform equalization using a perceptually and
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semantically relevant, simple interface. A similar approach, also incorpo-
rating gestural control, was applied to dynamic range compression in Wil-
son et al. (2015).

Current and Future Research Directions

Open Multitrack Testbed

The availability multitrack audio is of vital importance to research in
this field, but existence of such tracks alone is not sufficient. The content
should be highly diverse in terms of genre, instrumentation and quality,
so that sufficient data is available for most applications. Where training
on large datasets is needed, such as with machine learning applications, a
large number of audio samples is especially critical.

Data that can be shared without limits, because of a Creative Commons
or similar license, facilitates collaboration, reproducibility and demonstra-
tion of research and even allows it to be used in commercial settings, mak-
ing the testbed appealing to a larger audience.

Moreover, reliable metadata can serve as a ground truth that is neces-
sary for applications such as instrument identification, where the algorithm’s
output needs to be compared to the ‘actual’ instrument. Providing this data
makes the testbed an attractive resource for training or testing such algo-
rithms, as it obviates the need for manual annotation of the audio, which can
be particularly tedious if the number of files becomes large. Similarly, for
the testbed to be highly usable, it is mandatory that the desired type of data
can be easily retrieved by filtering or searches pertaining to this metadata.

Existing online resources of multitrack audio content have a relatively
low number of songs, show little variation in content, contain content of
which the use is restricted due to copyright, provide little to no metadata,
rarely have mixed versions including the parameter settings, and/or do not
come with facilities to search the content for specific criteria. However,
two initiatives (Bittner et al., 2014; De Man et al. 2014a) have tried to
address this problem. MedleyDB is an annotated, royalty-free dataset of
multitrack recordings, initially developed to support research on melody
extraction, but generally applicable to a wide range of multitrack research
problems. The Open Multitrack Testbed (which also links to the MedleyDB
content) was designed for broad and diverse use by researchers, educators
and enthusiasts. Such initiatives are a strong indicator that research in this
field will continue to grow.

Mix Evaluation

One of the chief distinguishing characteristics between the early work
on intelligent mixing systems and those described herein is that very
few of the early systems had any form of subjective evaluation, whereas
now this is standard practice. A popular form of evaluation for such sys-
tems has become multistimulus rating, similar to that used in MUSHRA.
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Mansbridge et al. (2012b) compared their proposed autonomous faders
technique with a manual mix, an earlier implementation, a simple sum of
sources and a semi-autonomous version. Mansbridge et al. (2012a) com-
pared an autonomous panning technique with a monaural mix and panning
configurations set manually by three different engineers. Both showed that
fully autonomous mixing systems can compete with manual mixes.

Similar listening tests for the multitrack dynamic range compression
system described in Maddams et al. (2012) were inconclusive, however,
since the range of responses was too large for statistically significant dif-
ferences between means and since no dynamic range compression was
often preferred, even over the settings made by a professional sound engi-
neer. However, a more rigorous listening test was performed in Ma et al.
(2015), where it was shown that compression applied by an amateur was
on a par with no compression at all, and an advanced implementation of
intelligent multitrack dynamic range compression was on a par with the
settings chosen by a professional.

In Wichern et al. (2015), the authors first examined human mixes from a
multitrack dataset to determine instrument-dependent target loudness tem-
plates. Three automatic level balancing approaches were then compared to
human mixes. Results of a listening test showed that subjects preferred the
automatic mixes created from the simple energy-based model, indicating
that the complex psychoacoustic model may not be necessary in an auto-
mated level setting application.

One of the most exciting and interesting developments has been per-
ceptual evaluation of complete automatic mixing systems. In Matz et al.
(2015), various implementations of an automatic mixing system are com-
pared, where different combinations of autonomous multitrack audio
effects were applied, so that one could see the relative importance of each
individual tool. Although no comparison was made with manual mixes, it
is clear that the application of these tools provides an improvement over
the original recording, and that the combination of all tools results in a
dramatic improvement.

Conclusions

In this chapter, we described how mixing of multitrack audio could be
made simpler and more efficient through the use of intelligent software
tools. Ideally, intelligent systems for mixing multitrack audio should be
able to pass a Turing test. That is, they should be able to produce music
indistinguishable from that which could be handcrafted by a professional
human engineer. This would require the systems to be able to make artistic
as well as technical decisions, and achieve this with almost arbitrary audio
content. However, considerable progress is still needed in order for systems
to even be able to ‘understand’ the musician’s intent. But, in the near term,
such software tools may result in two types of systems. The first would be
a set of tools for the sound engineer that automate repetitive tasks. This
would allow professional audio engineers to focus on the creative aspects
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of their craft, and help inexperienced users create high-quality mixes. The
other type of system would be a ‘black box’ for the musician that allows
decent live sound without an engineer. This would be most beneficial for
the small band or small venue that doesn’t have or can’t afford a sound
engineer, or for recording practice sessions where a sound engineer is not
typically available.

There are major concerns with such an approach. Much of what a sound
engineer does is creative and based on artistic decisions. It is doubtful that
such decisions could be effectively reproduced by a machine. But if the auto-
mation is successful, then machines may replace sound engineers. However,
it is important to note that these tools are not intended to remove the creativ-
ity from audio production. Nor do they require software to reproduce artistic
decisions, although this would be an interesting direction for future research.
Rather, the tools rely on the fact that many of the challenges are technical
engineering tasks, some of which are perceived as creative decisions because
there is a wide range of approaches without a clear understanding of listener
preferences. By automating those engineering aspects of record production,
it will allow the musicians to concentrate on the music and allow the audio
engineers to concentrate on the more interesting, creative challenges.
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